Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Food Chem ; 451: 139426, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38670026

ABSTRACT

Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.

2.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Article in English | MEDLINE | ID: mdl-38626608

ABSTRACT

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Subject(s)
Aflatoxin B1 , Carps , Cell Proliferation , Extracellular Matrix , Myoblasts , Reactive Oxygen Species , Animals , Aflatoxin B1/toxicity , Myoblasts/drug effects , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Cell Proliferation/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Cell Movement/drug effects
3.
J Agric Food Chem ; 72(9): 4977-4990, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386875

ABSTRACT

Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.


Subject(s)
Carps , Ferroptosis , Fish Diseases , Ochratoxins , Animals , Humans , Dietary Supplements , Immunity, Innate , Signal Transduction , Carps/genetics , Carps/metabolism , Diet , Muscles/metabolism , Animal Feed/analysis , Fish Proteins/metabolism
4.
Aquat Toxicol ; 263: 106701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776711

ABSTRACT

Ochratoxin A (OTA) is a common fungal toxin that pollutes raw materials of aquatic feeds (such as corn, soybean meal, and wheat). This study explored the effects of OTA through diet on muscle toxicity in juvenile grass carp (Ctenopharyngodon idella). The following results were obtained for the muscle. (1) With an increase in dietary OTA, the residue of OTA in muscle increased, muscle fiber diameter and density decreased, and even muscle fiber breakage. (2) OTA caused oxidative stress by downregulating GPx1 (a, b) and Trx via inhibited the PGC1-α/Nrf2 signaling pathway. (3) OTA exacerbated endoplasmic reticulum stress in the muscle by causing endoplasmic reticulum expansion (results of transmission electron microscopy) and upregulating the expression of GRP78, eIF2α, ATF6, PERK, and CHOP. (4) OTA reduced muscle fiber diameter by inhibiting protein synthesis (AKT, TOR, and S6K1) and promoting the mRNA expression of protein degradation-related genes (MURF1, MAFBX, and FoxO3a), as well as by reducing AKT and promoting the immunofluorescence expression of FoxO3. (5) OTA inhibits collagen deposition by downregulating TGF-ß1, TGF-ßR1, Smad2, Smad3, Smad4, CTGF, TIMP, PHD, and LOX mRNA expressions as well as the CTGF immunofluorescence expression. Moreover, based on the GSH and collagen content contents, the upper safe dose for OTA-induced toxicity was 963.6 and 1129.6 µg/kg diet, respectively. Using the example of OTA, our research has provided new insights that raise concerns about the quality of aquatic products by exploring muscle toxicity caused by mycotoxins.

5.
Int J Mol Sci ; 24(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37511003

ABSTRACT

The vertebrate mucosal barrier comprises physical and immune elements, as well as bioactive molecules, that protect organisms from pathogens. Vitamin D is a vital nutrient for animals and is involved in immune responses against invading pathogens. However, the effect of vitamin D on the mucosal barrier system of fish, particularly in the skin, remains unclear. Here, we elucidated the effect of vitamin D supplementation (15.2, 364.3, 782.5, 1167.9, 1573.8, and 1980.1 IU/kg) on the mucosal barrier system in the skin of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila. Dietary vitamin D supplementation (1) alleviated A. hydrophila-induced skin lesions and inhibited oxidative damage by reducing levels of reactive oxygen species, malondialdehyde, and protein carbonyl; (2) improved the activities and transcription levels of antioxidant-related parameters and nuclear factor erythroid 2-related factor 2 signaling; (3) attenuated cell apoptosis by decreasing the mRNA and protein levels of apoptosis factors involved death receptor and mitochondrial pathway processes related to p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signaling; (4) improved tight junction protein expression by inhibiting myosin light-chain kinase signaling; and (5) enhanced immune barrier function by promoting antibacterial compound and immunoglobulin production, downregulating pro-inflammatory cytokine expression, and upregulating anti-inflammatory cytokines expression, which was correlated with nuclear factor kappa B and the target of rapamycin signaling pathways. Vitamin D intervention for mucosal barrier via multiple signaling correlated with vitamin D receptor a. Overall, these results indicate that vitamin D supplementation enhanced the skin mucosal barrier system against pathogen infection, improving the physical and immune barriers in fish. This finding highlights the viability of vitamin D in supporting sustainable aquaculture.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Diet , Aeromonas hydrophila/physiology , Immunity, Innate , Vitamin D/pharmacology , Fish Proteins/genetics , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/veterinary , Vitamins/pharmacology , Carps/metabolism , Animal Feed/analysis , Dietary Supplements
6.
Ecotoxicol Environ Saf ; 262: 115153, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37348215

ABSTRACT

Ochratoxin A (OTA), a notorious pollutant widely present worldwide, seriously pollutes aquafeeds. This paper aims to explore the toxicity effects of OTA by the way of diet on the skin barrier in grass carp (Ctenopharyngodon idella). Results were shown as follows in the skin: (1) OTA increased the mRNA abundances of uptake transporter proteins (e.g., OAT3) and decreased efflux transporter proteins (e.g., ABCG2), which caused the accumulation of OTA in the skin of grass carp. (2) OTA upregulated the gene expression related to ROS production by enhancing the NOX (1, 2, 4) signaling pathway and decreased the ability to ROS elimination with downregulation of GPx1 (a,b), Trx by inhibiting the PGC1-α/Nrf2 signaling pathway, which caused oxidative damage to the skin. (3) OTA exacerbated apoptosis in the skin by upregulating the expression of apoptosis-related proteins mediated by ways of endoplasmic reticulum stress and mitochondrial apoptosis. Moreover, OTA down-regulated the mRNA and protein abundances of tight junction-related proteins by inhibiting the MLCK signaling pathway, which in turn disrupted the tight junctions. (4) OTA reduced the number of mucous cup cells and decreased f LZ activities and IgM contents, and finally down-regulated the mRNA abundances of mucin (2, 3), LEAP-2 (A, B), and ß-defensin (1, 2, 3), which in turn resulted in impairing skin chemical barrier. Moreover, based on the antimicrobial-related indexes (LZ activities and IgM contents), the OTA-safe upper doses were 814.827 and 813.601 µg/kg.

7.
J Sci Food Agric ; 103(3): 1172-1182, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36085562

ABSTRACT

BACKGROUND: Deterioration of flesh quality has bad effects on consumer satisfaction. Therefore, effects of safe mannan-oligosaccharides (MOS) on flesh quality of grass carp (Ctenopharyngodon idella) muscle were studied. A total of 540 healthy fish (215.85 ± 0.30 g) were randomly divided into six groups and fed six separate diets with graded levels of MOS (0, 200, 400, 600, 800 and 1000 mg kg-1 ) for 60 days. This study aimed at investigating the benefits of dietary MOS on flesh quality (fatty acids, amino acids and physicochemical properties) and the protection mechanism regarding antioxidant status. RESULTS: Optimal MOS could improve tenderness (27.4%), pH (5.5%) while decreasing cooking loss (16.6%) to enhance flesh quality. Meanwhile, optimal MOS improved flavor inosine 5'-monophosphate (IMP) of 11.8%, sweetness and umami-associated amino acid, healthy unsaturated fatty acid (UFA) of 14.9% and n-3 polyunsaturated fatty acids (n-3 PUFAs) especially C20:5n-3 (15.8%) and C22:6n-3 (38.3%). Furthermore, the mechanism that MOS affected pH, tenderness and cooking loss could be partly explained by the reduced lactate, cathepsin and oxidation, respectively. The enhanced flesh quality was also associated with enhanced antioxidant ability concerning improving antioxidant enzymes activities and the corresponding transcriptional levels, which were regulated through NF-E2-related factor 2 (Nrf2) and target of rapamycin (TOR) signaling. Based on pH24h , cooking loss, shear force and DHA (docosahexaenoic acid, C22:6n-3), optimal MOS levels for grass carp were estimated to be 442.75, 539.53, 594.73 and 539.53 mg kg-1 , respectively. CONCLUSION: Dietary MOS is a promising alternative strategy to improve flesh quality of fish muscle. © 2022 Society of Chemical Industry.


Subject(s)
Carps , Fish Diseases , Animals , Amino Acids , Animal Feed/analysis , Antioxidants/metabolism , Carps/metabolism , Diet , Dietary Supplements , Fish Proteins/metabolism , Mannans
8.
Food Chem X ; 15: 100412, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211744

ABSTRACT

We studied the effects of conjugated linoleic acid (CLA) on the amount of nutrients, flavour substances, and healthcare fatty acids, the physicochemical properties, and the potential molecular mechanisms in the muscles of sub-adult grass carp (Ctenopharyngodon idella). Fish were fed graded levels of CLA (0.0, 3.1, 6.4, 9.6, 12.7, and 15.9 g/kg diets) for 60 days. Protein, glutamic acid, alanine, inosine monophosphate (IMP), eicosapentaenoic acid (EPA; 20:5n-3), docosahexaenoic acid (DHA; 22:6n-3), and total CLA contents (p < 0.05) increased in CLA 3.1 âˆ¼ 12.7, 6.4 âˆ¼ 9.6, 6.4 âˆ¼ 9.6, 6.4 âˆ¼ 15.9, 3.1 âˆ¼ 9.6, 3.1 âˆ¼ 9.6, and 3.1 âˆ¼ 15.9 g/kg diet, respectively (p < 0.05). In addition, optimal CLA significantly increased pH24, shear force, collagen content, and myofibre density in the muscle (P < 0.05); however, it decreased myofibre diameter (p < 0.05). We concluded that 6-9 g/kg CLA in the diet could improve the flesh quality of sub-adult grass carp.

9.
Ecotoxicol Environ Saf ; 243: 113994, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35994904

ABSTRACT

Nitrite poses a serious threat to intensive aquaculture. Protein, as a major nutrient in animals, is vital for protecting animal tissues from damage. In this study, we investigated the protective effect of dietary protein on gill tissue structure and the underlying mechanisms in sub-adult grass carp (Ctenopharyngodon idella) exposed to nitrite stress. Six iso-energetic semi-purified diets containing different protein levels (16-31 %) were formulated, and fed to fish for 60 d. The fish were then exposed to a nitrite solution for 4 d. Histopathological observation and determination of related indices (serum glucose, serum cortisol, nitric oxide, peroxynitrite, reactive oxygen species, malondialdehyde, and protein carbonyl) showed that 22-25 % dietary protein significantly alleviated the nitrite-induced stress response, gill tissue damage and oxidative damage. Further research found that a suitable dietary protein suppressed the nitrite-induced endoplasmic reticulum stress (ERS) 78 kDa glucose-regulated protein (GRP78) related signaling pathway which possibly activated autophagy and apoptosis. Interestingly, we discovered that proper dietary protein reduced autophagy, probably through unc-51-like kinase 1 (Ulk1), BCL-2-interacting myosin-like coiled-coil protein (Beclin1), autophagy-related gene 5 (Atg5), Atg12, microtubule-associated protein1 light chain 3 (LC3), BCL-2 interacting protein 3 (BNIP3) and autophagy receptor P62 (p62). We also found that an appropriate dietary protein inhibited nitrite-induced apoptosis via mitochondrial and death receptor pathways. In summary, our findings are the first to demonstrate that 22-25 % of dietary protein levels can play a protective role against nitrite-induced gill injury.


Subject(s)
Carps , Fish Diseases , Animal Feed/analysis , Animals , Apoptosis , Autophagy , Carps/metabolism , Diet , Dietary Proteins , Endoplasmic Reticulum Stress , Fish Diseases/metabolism , Fish Proteins/metabolism , Gills/metabolism , Glucose/metabolism , Immunity, Innate , Nitrites , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism
10.
Anim Nutr ; 10: 305-318, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35891684

ABSTRACT

Vitamin D3 (VD3), an essential nutrient for animals, has been demonstrated to stimulate the uptake of certain amino acids. However, the role of VD3 in the intestine, the primary site for digestion and absorption of nutrients, remains poorly characterized. Here, the grass carp (Ctenopharyngodon idella) was studied to assess the influence of different doses of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) on growth performance, intestinal morphology, digestive absorption, amino acid transport, and potential signaling molecule levels in a feeding experiment. As a result, dietary VD3 improved growth performance, intestinal structure, and digestive and brush border enzyme activities. Additionally, most intestinal free amino acids and their transporters were upregulated after VD3 intake, except for Ala, Lys, Asp, Leu, solute carrier (SLC) 7A7, SLC1A5, and SLC1A3 mRNA in different segments, Leu and SLC6A14 mRNA in the proximal intestine, and SLC7A5 mRNA in the mid and distal intestine. In the crucial target of rapamycin (TOR) signal pathway of amino acid transport, the gene and protein expression of TOR, S6 kinase 1, and activating transcription factor 4 were elevated, whereas 4E-binding protein 1 was decreased, further suggesting an advanced amino acid absorption capacity in the fish due to VD3 supplementation. Based on percentage weight gain, feed efficiency, and trypsin activity, the VD3 requirements of on-growing grass carp were estimated to be 968.33, 1,005.00, and 1,166.67 IU/kg, respectively. Our findings provide novel recommendations for VD3 supplementation to promote digestion and absorption capacities of fish, contributing to the overall productivity of aquaculture.

11.
Antioxidants (Basel) ; 11(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35624670

ABSTRACT

Mannan oligosaccharides (MOS) are a type of functional oligosaccharide which have received increased attention because of their beneficial effects on fish intestinal health. However, intestinal structural integrity is a necessary prerequisite for intestinal health. This study focused on exploring the protective effects of dietary MOS supplementation on the grass carp's (Ctenopharyngodon idella) intestinal structural integrity (including tight junction (TJ) and adherent junction (AJ)) and its related signalling molecule mechanism. A total of 540 grass carp (215.85 ± 0.30 g) were fed six diets containing graded levels of dietary MOS supplementation (0, 200, 400, 600, 800 and 1000 mg/kg) for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila for 14 days. We used ELISA, spectrophotometry, transmission electron microscope, immunohistochemistry, qRT-PCR and Western blotting to determine the effect of dietary MOS supplementation on intestinal structural integrity and antioxidant capacity. The results revealed that dietary MOS supplementation protected the microvillus of the intestine; reduced serum diamine oxidase and d-lactate levels (p < 0.05); enhanced intestinal total antioxidant capacity (p < 0.01); up-regulated most intestinal TJ and AJ mRNA levels; and decreased GTP-RhoA protein levels (p < 0.01). In addition, we also found several interesting results suggesting that MOS supplementation has no effects on ZO-2 and Claudin-15b. Overall, these findings suggested that dietary MOS supplementation could protect intestinal ultrastructure, reduce intestinal mucosal permeability and maintain intestinal structural integrity via inhibiting MLCK and RhoA/ROCK signalling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...